A coauthored paper published on SCIENCE

Kargel J S, Leonard G J, Shugar D H, Haritashya U K, Bevington A, Fielding E J, Fujita K, Geertsema M, Miles E S, Steiner J, Anderson E, Bajracharya S, Bawden G W, Breashears D F, Byers A, Collins B, Czyzowska-Wisniewski E, Dhital M R, Donnellan A, Evans T L, Geai M L, Glasscoe M T, Green D, Gurung D R, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel W W, Jiang L, Jibson R, Kääb A, Khanal N R, Kirschbaum D, Kraaijenbrink P D A, Lamsal D, Liu S, Lv M, Mckinney D, Nahirnick N K, Nan Z, Ojha S, Olsenholler J, Painter T H, Pleasants M, Pratima K, Qi Y, Raup B H, Regmi D, Rounce D R, Sakai A, Shangguan D, Shea J M, Shrestha A B, Shukla A, Stumm D, van der Kooij M, Voss K, Wang X, Weihs B, Wolfe D, Wu L, Yao X, Yoder M R, Young N. Geomorphic, Tectonic, and Geologic Controls of Geohazards Induced by Nepal’s 2015 Gorkha Earthquake. Science. 2015, 350. DOI:10.1126/science.aac8353.

Abstract: The Gorkha earthquake (M 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

http://www.sciencemag.org/lookup/doi/10.1126/science.aac8353

Leave a Reply

Your email address will not be published. Required fields are marked *