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Abstract 

As a sensitive indicator to climate change, 

permafrost is extensively distributed over the Qinghai-

Tibetan Plateau (QTP). The physical process-based 

models (PPM) are more capable of simulating the 

hydrothermal processes of permafrost than often-used 

statistical empirical models. The application of any 

permafrost PPM to QTP, however, is challenged by the 

availability of soil profile data, which are usually absent 

in deep layers. In the paper, a 1km resolution multiple-

layer soil texture dataset (MSTD) with eighteen layers, 

beyond the depth of zero annual amplitude (DZAA) of 

soil temperature, has been developed for supporting 

permafrost modeling over QTP. It revealed that loam, 

sand and gravel are mainly distributed over the study 

area, and more loams occur in the east and in top layers 

while more gravels in the west and in deep layers. 

Further efforts will be placed to improve the dataset 

accuracy by collecting more soil survey profiles from 

other sources. 

1. Introduction 

 The global average temperature has increased by 

approximately 0.85 °C over the past 100 years, with the 

prominent periods of warming from 1976 onwards. 

Widespread permafrost degradation due to climate 

warming during the last several decades has already 

induced many feedbacks in the global climate system and 

can significantly impact local hydrology, energy and 

moisture balances on land surface, carbon exchange 

between land and atmosphere, as well as engineering 

infrastructure[1-4]. Therefore, more and more attentions 

have been paid to understanding, assessing, and 

predicting the changes of permafrost in recent years [3, 5-8]. 

Modelling is an essential method to evaluate 

characteristics of thermal state, moisture/ice content and 

spatial distribution of permafrost [9-11]. It is especially 

useful in projecting the responses of permafrost to 

climate change and assessing hazards induced by 

permafrost degradation [3, 12-14].The Qinghai-Tibetan 

Plateau (QTP) is the largest geomorphological unit on the 

Eurasian continent, and the largest permafrost region in 

low and middle latitudes. The mean elevation is more 

than 4000 m above sea level, less influenced by 

anthropological activities, thus making itself an ideal 

place for inspecting ecosystem response and its 

sensitivity to climate warming [6, 15]. Modelling and 

mapping of the general distribution of permafrost on the 

QTP have been divided into statistical empirical models 

(SEM) and physical process-based models (PPM). PPMs 

have advantages in temporal and spatial modelling with 

their regionally adaptable process options and 

parameterization schemes [16, 17], and it was easy to 

couple with global climate model (GCM). Some 

permafrost state indicators, such as the mean annual 

ground temperature (MAGT) at the depth of zero annual 

amplitude(DZAA), active layer thickness (ALT) and 

ground ice content can also be obtained through PPMs. 

Few works have focused on the simulation of permafrost 

related processes on the QTP using PPMs, because the 

shortage of the continuous area forcing data, especially 

the soil data, to drive the model[18].Consequently, the 

complete picture of permafrost changes over the QTP 

thus cannot be concluded. But, modelling of the ongoing 

changes permafrost distribution and characteristics 

driving by continuous area soil in the QTP is imperative, 

and thus the motivation for this study.  

Recently, Shang guan et al. [2013] created a 

composited China soil properties dataset (CSPD) with 

more detailed information on physical and chemical 
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properties at eight soil layers to a depth of 2.3 m. The 

database are much reliable [19] compared with previous 

datasets (e.g., The Harmonized World Soil Database). 

But, it remains indispensable to be updated in west 

region of the QTP owing to it was produced by limited 

sample data in that region. Furthermore, the depth of 

CSPD cannot meet the DZAA needs of permafrost 

research in QTP. The deeper soil boreholes are, however, 

generally only available for small areas because 

obtaining these boreholes is time consuming and 

expensive. A major requirement of permafrost PPMs 

research in QTP, therefore, is an understanding of the 

nature soil texture, especially deeper soil texture. 

Unfortunately, a lack of information concerning deeper 

soil texture dataset has impeded the permafrost research 

in QTP. 

This paper describes the development of a 

multilayer soil texture dataset (MSTD), which including 

top layer MSTD is updated from China soil properties 

dataset(CSPD) by recently surveyed samples and deep 

layer MSTD were predicted by an optimal model for 

application PPMs research permafrost over QTP. The 

MSTD is prepared at 1km resolution with eighteen layers 

exceeding the depth of zero annual amplitude (DZAA) of 

permafrost.  

2. Methodology 

The top layer MSTD is updated from CSPD by 

detailed soil survey profiles where location on west and 

north QTP. The region to be updated was first selected 

through the simple intersection between soil sample and 

china SOTER unit. Then, it is need to obtaining a 

representative value of soil sample for each standard 

layers in all selected SOTER unit. The medians for the 

sand, silt and clay contents of the linked soil sample were 

calculated for each sample layer. The update value of 

sand, silt and clay content were replacement by using the 

median value for each selected SOTER unit so the 

influence of extreme values is partially ignored compared 

to a mean value. Finally, the all PSD of CSPD, which 

including update and no update data, were converted to 

the USDA soil texture class by using USDA soil textural 

triangle, which it has been widely used to transfer PSD 

data into soil texture associated soil hydraulic and 

thermal properties. However, gravel is common in top 

layer soil profiles on the QTP. Those USDA coarse-

grained soil (e.g., sand class) need subdivided into gravel 

class if the fractions of gravel is more than sand. 

The deep layer MSTD was designed based on 

prediction model using the direct soil texture data of 

boreholes. One of the key areas of prediction deep layer 

MSTD is the choice of models which have been 

introduced to link soil texture and environmental 

variables. Various modelling techniques have been used 

for the digital mapping of soil texture. The most 

commonly used models include artificial neural network 

(ANN), decision tree (DT), K-nearest neighbor (KNN), 

random forest (RF), multiple linear regression 

(MLR) ,regression tree (RT), naive Bayes (NB) and 

support vector machine (SVM). The other key areas is 

the choice of environmental factor, which one is 

important predictor factor for deep layer MSTD in all soil 

environmental factors. Based on the theory of soil 

forming factors and soil-landscape modeling [20, 21], we 

screened climate (frozen soil type), neighbor layer, soil 

parent material (quaternary geology), and topography, as 

the governing environmental factors for consideration in 

this study. Potential nine variables, in which 

topographical factors can be split into six variables, are 

listed in Table 1. Therefore, the available combinations 

of soil environmental factors include T, T+C, T+P, 

T+C+P, T+N, T+C+N, T+P+N, and T+C+P+N (T,C,P 

and N are alias show in Table 1). These candidate models 

input is soil environmental factor related combination.  
Table 1. Potential variables for use deep soil texture. 

Factors Variables Alias 

Climate Frozen soil type C 

Parent material  Quaternary geology P 

 

 

Topography 

Altitude  

 

T 

Slope 

Aspect 

Plane curvature 

Profile curvature 

Topographic wetness index 

Neighbor layer Soil Texture N 

Since eight models and eight combinations to be used 

in deep soil MSTD prediction, there will be 64 result for 

each deeper soil layers. It is crucial to screen the optimal 

model and the combination as the final choice to 

predicted deep layer MSTD. Therefore, those models and 

combinations need to be evaluation using field 

investigation data. A 10-fold cross-validation was used in 

all model and combinations. Those models and 

combinations are evaluated by the calculation overall 

accuracy (OA). The bigger the OA value, the better is the 

prediction quality. Finally, the optimal model and 

predictor combinations are to be used predicted deep 

layer MSTD.  

3. Results 

A 10-fold cross-validation was used chose optimal 

model and predictor. Fig 1 shown goodness-of-model 10 

fold cross-validation OA of for different predictor model 

with each deep soil layer.  In this figure, there is no 

universal method applicable for all layer. But, the worse 

model is MLR in almost all layer since the relationship 

between soil and the predictor is not a simple linear. 

Usually, tree models (C50, RT, and RF), no matter 
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classification and regression, shows the best performance 

for each layer. So, to ensure the accuracy of OA value 

above 0.65 in all layers, The C50 is the optimal selected 

for predict deep layer MSTD. 

 
Fig 1. Goodness-of-model of 10 fold cross-validation in 

deep MSTD 

  Similar to the optimal model selection, goodness-

of-environmental 10 fold cross-validation OA with 

different environmental predictor combination for deep 

soil layer shown in Fig 2. In the hierarchical analysis of 

environmental correlation, applications neighbor layer 

appeared the better techniques (Fig 2). In order to ensure 

the accuracy of the all layers are above 0.65, the 

T+C+P+N environmental predictors combination is the 

best selected for predict deep layer MSTD. 

 
Fig 2. Goodness-of-environmental of 10 fold cross-

validation in deep MSTD 

The relative to each layer highest accuracy C50 

model, T+C+P+N environmental factors combination 

have been used in deep soil MSTD prediction and it is 

eventually aggregated by china SOTER using the largest 

area proportion of soil texture classes to represent whole 

SOTER unit. It is necessary to evaluate this aggregated 

MSTD result using available field investigation data. 

 A comprehensive spatially detailed MSTD was 

produced for each layer. The accuracy of overall MSTD 

as shown in Table 2. The KAPPA and OA of original 

CSPD and overall MSTD were separately calculated with 

field investigation samples. Mainly due to there are rarely 

available samples in north QTP for original CSPD, the 

accuracy of original CSPD is some low, but the 

improvement is obvious for all layers in top layer MSTD. 

In all, the OA accuracy of the final aggregated MSTD are 

all above 0.55.  

Table 2. soil texture accuracy of overall MSTD 

H 
CSPD MSTD 

H 
MSTD 

KAPPA OA KAPPA OA KAPPA OA 

H1 0.24 0.33 0.61 0.68 H10 0.54 0.62 

H2 0.28 0.28 0.60 0.67 H11 0.51 0.57 

H3 0.24 0.36 0.59 0.65 H12 0.53 0.59 

H4 0.22 0.28 0.63 0.71 H13 0.49 0.57 

H5 0.21 0.33 0.57 0.65 H14 0.48 0.56 

H6 0.27 0.26 0.58 0.66 H15 0.65 0.67 

H7 0.25 0.22 0.64 0.75 H16 0.68 0.71 

H8   0.57 0.59 H17 0.67 0.69 

H9   0.55 0.65 H18 0.66 0.68 

The spatially detailed MSTD was shown in Fig 3. It 

could be seen that the QTP contains mainly loam, sand 

and gravel, which cover different for each layer and more 

than 70% of the total area, respectively. The soil particle 

size of deep layer soil is larger than top layer soil. Loam 

percentage is significant reduction and sand and gravel 

percentage is significant increase with increasing depth 

of soil profile. In addition, soil texture regional 

characteristics, with a clear variation from east to west, 

being more loam in the east while more gravel in the 

west (Fig 3).  

 

Fig 3. The result of MSTD 

4. Conclusion 

As a sensitive indicator to climate change, 

permafrost is extensively distributed over the QTP. 

Modelling of the ongoing changes permafrost 

distribution and characteristics drive by soil in QTP is 

imperative. This paper describes the development of a 

MSTD for use in regional and continental-scale 

permafrost PPMs research over QTP. The MSTD with 

eighteen layers to a DAZZ of QTP, at 1km resolution, 
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has become available to permafrost researchers. The 

following conclusions can be drawn: 

The QTP contains mainly loam, sand and gravel. 

Soil texture distribution characteristics is with a clear 

variation from east to west and top to deep. More loam in 

the east and top while more gravel in the west and deep 

over QTP. 

The C50 model shows the best performance for each 

deep layer. It could be recommended as the spatial 

prediction models of QTP, which is an area of limited 

human exploration that has little or no data available. 

Neighbor layer is important predictor factor for each 

deep layer in all relevant soil environmental factors. In 

addition, it is almost widespread more input 

environmental variables result in a favorable model fit.  

The MSTD provide crucial data support for the 

hydrothermal process of permafrost research. Efforts will 

be made to improve the soil texture accuracy by using 

additional sources of soil survey and characterization 

information. 
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